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Abstract

This thir' ieport describes a new method to control single-link lumped-mass flexible arms in the case of
hav*rJ friction in the joint and changes in the payload. Both linear and nonlinear friction components are
overcome by using the very robust control scheme developed in the second report, which is based on two
nested feedback loops: an inner one that controls the motor position and an outer one that controls the
tip position. In order to compensate for changes in the payload, an adaptive control scheme is used. Two
cases are considered when compensating for changes in the tip payload: the arm is a minimum phase
system or a non-minimum phase one. Different adaptive control schemes are proposed in each case. In
them, compensation for changes in the load is achieved in two steps: first the tip payload is estimated
from a very simple procedure proposed here, and then the feedforward and feedback controllers are tuned
according to this estimated value. It results in a quite simple control law that can be used for real-time
control of flexible arms, and that needs minimal computing effort. Experimental results are shown.
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1. Introduction

Several methods have been developed during recent years to control single-link flexible arms with
invariant parameters: [1-6], for example. These methods allow a precise control of the tip position
by sensing some states of the motor and the tip (position, velocity, etc). All the states of the system
are reconstructed from these measurements, and used to place the closed-loop poles of the arm. These
reconstructions (by using filters or observers) usually involve a large amount of computation, especially
when there is a high level of noise in the measurements.

A next step has been to consider that the parameters of the arm may vary with tl'me. Some adaptive
control schemes have been proposed to compensate for these changes. They are based on the methods
mentioned in the previous paragraph and make use of the same sensing. The parameter that tipically has
been considered to change is the tip payload ([7-10], e.g.), which represents the load carried by the robot.
These adaptive controls are unnecessarily complicated to compensate for only one varying parameter.
Moreover nonlinear and time varying joint frictions, which play important roles in many robots, are
parameters that have not been considered in all these adaptive and non-adaptive methods [1-10].

This report is the third one of a series of reports that describe a new method to control single-link
flexible arms. There are only two parameters that are likely to vary through the time in a flexible
manipulator: the friction in the joint and the tip payload. We develop here a procedure to compensate
for changes in these two parameters, that makes use of measurements at several points of the beam. We
will show that the real time calculations carried out by the controller are dramatically reduced in our
method, compared with the others. Our method is based on a feedforward-feedback combined scheme,
and we particularize our study to the case of lumped-mass flexible arms. We showed in Report I that this
method can be generalized to distributed-mass flexible arms by using the modelling technique described
in Section 4 of this first report.

Lumped-mass flexible arms consist of massless flexible structures that carry masses concentrated at
certain points of the beam (see Figure 1). Only translations of these masses produce stresses in the
flexible structure, their rotations do not generate any torque in the beam. So the number of vibrational
modes in the structure coincide with the number of lumped masses. Our control scheme makes use of
measurement of the positions of all the lumped masses.

Problems caused by Coulomb friction (which is a nonlinear component of the friction) as well as
for changes in the dynamic friction coefficient are overcome by using a general robust control scheme
developed in [13] (Report II). This is composed of two nested loops: an inner loop that controls the
motor position and an outer loop that controls the tip position. See Fig. 2, where 0, is the motor angle,
0, is the tip position angle, and i is the motor current.

A new scheme is proposed to adapt the control law to changes in the load. Adaptive controls referenced
above are tased on the Model Reference Adaptive Control (MRAC) ([7], [8]); or on a two-stage process:
a system identification stage followed by the adaptation of the controller as a function of the identified
system parameters ([9], [10]). Both methods require a large amount of calculations to be performed in
real-time. Then powerful computers have to be used, being problematic the use of these methods for
control of multilink flexible arms. The adaptive control here proposed belongs to the second kind. But
it estimates only the tip payload (instead of the whole dynamic model) and changes only some specific
coefficients of the controllers. It makes the identification stage very fast and the adaptation law very
simple.
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The dynamic model of single-link flexible arms with lumped masses is resumed in Section 2. The
control loop for the motor position is briefly described in Section 3. Section 4 describes the tip position
control schemes used in both cases: minimum and non-minimum phase systems, when the tip payload is
invariant. And Section 5 develops the corresponding adaptive schemes. Experimental results are shown
in Section 6, and conclusions are stated in Section 7.

2. Lumped-Mass Flexible Arm Model

This section briefly resumes Section 2 of Part I. We divide the model of our flexible arm into two
submodels: the first one describes the behavior of the motor, the second one describes the behavior of the
mechanical structure using the angle of the motor as its input. These two submodels are coupled by the
reaction torque of the beam on the motor. This model is quite different from the models normally used in
control of flexible arms, which consider the applied torque as the input to the beam (Truckenbrodt [14],
Low [15]). Our model has some advantages when identifying flexible arms with friction in the joints
[16], and when trying to compensate for friction [13]. Another advantage of our model is that it allows
us to separate the dynamic-model terms that depend on the geometry of the beam from the terms that
depend on the lumped masses of the beam, facilitating the payload identification process.

Consider the system of Figure 1. It represents a massless flexible beam with n point masses distributed
along the structure, the last mass being located at the tip of the beam. The inertia of the motor is included
in the motor submodel. Let mri, 1 < i < n be the values of the masses and 1i the dictances between
consecutive masses i - 1 and i, where I is the distance between the rotation axis of the motor and the
first mass. We assume that beam deflections are small enough so that the distances between masses mi
(measured along length of beam) are equal to the distances between the masses' projections on x-axis.

We establish a coordinate system k - y, that is fixed in space with origin at the motor axis We denote
as 9i the angle between i-axis and the radial line from the origin to mass i (see Figure 1). T Ie angle of
the motor is denoted 0,

It can be shown [11] that the dynamic-equation for this beam submodel is:

d2o
M - = E./. [A o e+.,] (0)

where M = diag(ml, m2,.... Ma), (T = (01,02..., 0,,) is the vector of beam measured positions, A , i an
n x n constant matrix, 8 is a constant n x I column vector, and E • I is the stiffness of the beam, which
is assumed constant through the beam. In this expression, A and 5 depend only on the geometry of the
beam: Ii. The values of the lumped masses influence only matrix M.

The dynamic equation for the DC motor submodel is very simple:

K. i = J. --- + V - + C, + CF (2)

where K is the electromechanical constant of the motor, i is the current, J is the polar inertia of the motor,
V is the dynamic friction coefficient, Ct is the coupling torque between motor and beam and CF is the
Coulomb friction.
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We can express the coupling torque as a linear function [11]:

Ct = R"- e + h.+ • 0. (3)

where 7-1 = (hi, h2 ,... ,h,); hi, I < i < n+ I are parameters that do not depend on the masses of the beam.

3. Motor Position Control Loop

We resume here Section 3 of Part I. This control loop corresponds to the inner loop of Figure 2.
We want to achieve two objectives when designing a controller for this loop:

1. to remove the modeling error and the nonlinearities introduced by Coulomb friction and changes
in the coefficient of the dynamic friction,

2. to make the position controlled response of the motor much faster than the response of the tip
position control loop (outer loop in Figure 2).

The fulfillment of the second objective will allow us to substitute for the inner loop, an equivalent
block whose transfer function is approximately equal to one; i.e. the error in motor position is small and
quickly removed. This simplifies the design of the outer loop as will be seen in the next section.

To simplify the design of the inner loop, the motor submodel described in equation (2) can be linearized
by compensating for the Coulomb friction and can be decoupled from the dynamics of the beam by
compensating for the coupling torque. This is done by adding to the control current, the current equivalent
to these torques which is given by

it) = (C,(t) ± CF)/K (4)

where the sign of CF coincides with the sign of the motor velocity.

The coupling torque Ct(t) can be calculated either from strain gauge measurements at the base of the
link, or can be estimated, by using expression (3), from position measurements of the lumped masses and
the motor angle. The second approach is used here. After compensating for the friction and coupling
torque, the transfer function between the angle of the motor and the current is given by

Om(s) = M(S) = K/J (5)
i(s) s. (s + V/J)

The block diagram of the inner loop control system is shown in Figure 3 (discrete controllers version).
The feedforward and feedback controllers (A(z) and B(z) respectively) are designed so that the response
of the inner loop (motor-position-control) is significantly faster than the response of the outer loop (tip-
position-control) and without any overshoot. This is done by making the gain of the feedforward controller
large. It was shown in [131 that, in theory, this gain could be made arbitrarily large even in the case
of the arm being a non-minimum phase system. It was shown also that large gains in this loop reduce
the effects of nonlincaritics because of friction. Practical limits to these gains are given by the saturation

5



current of the D.C. motor amplifier, unmodelled high frequency dynamics, or even unstability because of
the discretization of the signals when using digital controllers.

When the closed-loop gain of the inner loop is sufficiently high, the motor position will track the
reference position with small error. Then the dynamics of the inner loop may be approximated by I when
designing the outer loop controller.

Notice that the dynamics of this inner loop is independent of the payload, so controllers of Figure
3 do not have to be adaptively tuned. This is because the only dependence of this submodel on the
payload is through the coupling torque, and it is exactly compensated by using position measurements
and expression (3), whose parameters hi are independent of the payload.

4. Nonadaptive Tip Position Controller

Provided that the inner loop has been satisfactorily closed, the dynamics of the arm are reduced to
the dynamics of the beam submodel. Because the transfer function of the inner loop is approximately I,
then 0,, = 0,,. We assume in what follows that both variables are identical.

The transfer function between the tip and motor positions is given by:

0,,(s)-E 1 EI.1(6
.(s" = g,(s) = C,, (M A s2 - E - I .,A)-' . E 1.13 (6)

where Ci = ( 0...010... 0 ) the I being in the i - th column. This transfer function holds for the case
where tip payload is constant.

If ge(s) is minimum phase, the simple control scheme described in Subsection 4.1 may be used. If it
is non-minimum phase, a general control scheme is proposed in Subsection 4.2. In general, the controller
for the tip position is composed of a combined feedforward/feedback control law. The feedforward com-
ponent is responsible of driving the tip of the arm closely to the desired trajectory, and the feedback term
is responsible of correcting tracking errors.

4.1. Control of minimum phase arms

The control scheme proposed here exploits the particular structure of equation (1). If we close a loop
using a feedback law of the form:

0,,,(t) = (C,,. 5) -  • [i7(t) - C,. A . 1(t)], (7)

we transform equation (6) into the simple expression:

,(s) E .I/m (8)
_(s) s

a i I I a6



Equation (8) corresponds to the dynamics of a rigid single-link arm, and techniques to control this are
well known. We propose the scheme of Figure 4 to drive the arm using second order parabolic profiles
as trajectories for the tip. The feedforward term provides with the acceleration of the desired trajectory,
and the feedback term is a standard P.D. controller that corrects tip position errors.

Notice that the feedback law (7) cancels all the zeros of the plant (and all the poles but two). It means
that, if the system has zeros in the right half-plane, some intermediate Oi, i # n, and O, become unstable.
Therefore, this scheme cannot be used for non-minimum phase flexible arms, and a more general method
is needed.

4.2. General control scheme

A general control scheme is proposed here, that may be used for both minimum and non-minimum
phase systems (see Figure 5). But now the controller for the tip position is mc-e complicated.

4.2.1. Feedforward term

If the transfer function between the angle of the motor and the angle of the tip g(s) is minimum
phase, then a second order parabolic profile can be used and the feedforward term is g;- (s). But if this
transfer function is non-minimum phase, then a quasi-parabolic profile with derivatives bounded up to the
fourth order (see Fig. 6) is used in order to guarantee the implementability of the feedforward term, and
the nominal quasi-parabolic profile is passed through a special filter in order to avoid unbounded control
signals. We denote that nominal trajectory as Pp.

The necessity of the above mentioned filter is justified from Figure 7. Assume an open loop control
for the case without external perturbations. If we want the tip to follow the reference exactly, then the
control signal 0,,, (which is the same as 0, neglecting the dynamics of the inner loop) is obtained by
passing the desired profile P. through a block k,(s) that implements the inverse of the plant gn(s). If
this plant had zeros in the right half-plane, they would become unstable poles in g- I(s) producing an
unbounded 0,,,. control signal. In order to avoid this, a modified k,(s) term must be used and the tip
reference would be now:

Or(S) = gn(s) . kn(s) . Pp(s) (9)

Pp(s) being the Laplace transform of the parabolic or quasi-parabolic profile. This filter is chosen in such
a way to get a reference trajectory On, as close as possible to the desired reference Pp, taking into account
the constraint of a bounded 6,,,,. We choose as a representative index of the closeness between trajectories
the integral of the squared difference between both profiles (see Fig. 7):

2(t) •dt2.. 2 •(-gn(s)"n 2s •-g .(-s)" n(-S))" ds (10)

where a parabolic profile 21s 3 has been assumed for P. because, from Figure 6, the quasi-parabolic profile
behaves as a parabolic one most of the time, being a 4-th order parabola only at the short transitions from
maximum to minimum acceleration and vice versa.
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Assuming that g,(s) is of the form:

I1(s - a) .Ij(s - bj)

g(s)= K. k =1 j=I
d(s)

where ai < 0, 1 < i < nt; bj > 0, 1 < j _< n2, and all the roots of d(s) are in the left half-plane, it can be
shown (12],[17] that the optimum kn(s) that minimizes the cost defined in (10) is given by

= d(s) . (a2 s2 + s+ al So)

I: 1I(s - a,) .1iI(s + b)
i=1 j=l

n2

rj(s +bj)
where the a coefficients are obtained, from the partial fraction expansion of n---,

3,3. (s - bj)
j=I

being the coefficients corresponding to the terms whose denominators are s, s2 , s3 respectively. The filter
is then

n2

1-(s- bj)
j-- (12)gn(S) -WS) = (a2 S2 + al -S + a 0 ).J (12)
II(s + bj)
j=l

4.2.2. Feedback term

The feedback controller is designed using optimization techniques (e.g. [181). We design a controller:
y(s) = -A .x(t) that drives x from an initial state to the zero state minimizing a cost function of the form:

00

where Ri E 4,
2

Ln
2 "n,R2 E R are weighting matrices, and x e R2.n is the state vector of the system. We

get from (1) the state equation of the system:

( n )x(t)+ ( 0M) ) (14)xt= E-/.M-- -A 0 )(E. ,v- A4

where xT(t) = ( 0 T 0T ), and 1,, E Rn'xn is the identity matrix.
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This feedback scheme uses the errors between the desired and the actual states to generate the control
signal. Defining A = ( At A2 ) ; A1, A2 E R'1 , we can express the control signal (y) in function
of the measured variables: y(s) = (A1 + A2 - s) . (Or(s) - 0(s)).

The reference vector for the measured variables (O,) may be obtained from the reference 0nr by using
the following expression derived from (1):

Or(s) = r(s) -O.r(S), (15)

CI.Adj(M • s2 
- E.1. ,A). E. .1

S C2 .Adj(M. s2 - E. I. A). E. I 3 1 (16)
s=Cn.Adj(M s2 - E. !.IA). E. I.B (16)

C,,.Adj(M • - E .1 .A). E .I.13

In the case of a non-minimum phase system, the denominator of this expression has some positive real
component roots. But they are cancelled with the zeros of filter (12), leaving 9,(t) bounded. Cancellation
may be exactly done because all these terms are computed.

This feedback control scheme presents important advantages over other existing schemes when im-
plemented on a digital computer. Other control methods need to reconstruct the whole state x from
measurements of the motor and tip of the arm by means of filters or observers. They involve a large
amount of computation. Also, in many cases, these reconstructions are distorted by the noise of the
measured signals making the control difficult. But in our case, because a) we have simplified the arm
dynamics by closing the motor position loop, and b) we are using more sensing in the beam, all the
states may be easily obtained: positions are measured and velocities may be approximated by the simple
difference equation

6(k . T) = (e(k .T) - 9((k - 1). T))/T (17)

where T is the sampling period and k is an integer. Because only the first derivative of measured signals is
needed, this approximation of the velocities of the mass points is reasonable in many cases, even having
relatively high levels of measurement noise.

5. Adaptive Tip Position Controller

The adaptive control is composed of two stages: the first one identifies the tip mass, and the second
tunes the coefficients of the controllers as functions of the estimated values of the masses.

5.1. Payload Estimation

We assume that changes in the tip payload are caused by the weight of the different objects carried
by the manipulator. Then we assume that the tip payload remains constant during each movement.

Lumped masses of our arms may be easily estimated by three ways from equation (1):

9



1. by double differentiation of 0,,(t):

mnE. I.- [C, ,4 A + C, • 3 0m (18)
n= E~ljnd2OB/dt(18)

2. by integrating twice equation (1):

E..1 [C . A• 0n) + C, L. m(ri)] drT - dr2

mn = .(t) (19)

3. and by using the solution intermediate between the previous two: differentiating once the left-hand
term and integrating once the right-hand term of equation (1).

Notice that we can use these expressions because of the property that matrices A, B are inrdcpendent
of the tip mass mn,. Any of these estimators may be used. The selection will depend on the quality
of the measurements. Expression (19) seems to be the most adequate because no derivatives of the tip
position measurement are required; then noisy measurements maybe used to estimate m,,. But, in turn,
this estimator carries out a double integration, and it showed to be very sensitive to little permanent errors
in the position measurements due to errors in the calibration of the arm or permanent bendings of the
beam.

Finally, we assumed that m,, is the only mass that can change. Provided that we know the values of
masses I < i < n, we can use equation (1) to obtain the accelerations of these masses, and they can
be used to get better estimations of states 0i, I < i < n than ones obtained from (17). The trajectory
described by the tip is often the slowest one among the trajectories of all the points of the beam. Then
relatively good estimations may be achieved for #,, from (17).

5.2. Tuning the Controllers

No controller of the motor position control loop needs to be tuned, because the decoupling term is
independent of the payload. Only the parameters of the tip position control loop need to be tuned as
described below.

5.2.1. Minimum phase controller

The feedback law (7) is independent of the tip mass. Only the gain mn,,/EI of Figure 4 needs to be
tuned as a function of the estimated mass. This tuning keeps all the performances of this control scheme
unchanged.

5.2.2. General scheme

Analyzing the controllers of Figure 5 we get [121:

e g,,(s) . k,(s) is independent of m,.
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" Only numerators of kn(s) and T(s) depend on m.

* If we consider a perturbation e(s) applied to the input of the system (O), then the resulting closed-
loop transfer function is

O(s) g(s)(20)
e(S) I + gn,(s) " (Al + A2 " S) " T(S)

and the zeros of this transfer function do not depend on the tip payload or on the coefficients of
the controller.

All this means that few computations are needed to tune the controller to the new estimated payload:

" The feedforward term 0, may always be expressed as:

9,,(t= M.(t)+ ran"O, (21)

where 9 , 9 are functions independent of m,. These functions can be easily generated from (11),
taking into account that the term

a2 .
2 +a1 .s+ao

n1  n2

fl(s - ai) .J(s + bj)
i=1 j=I

is independent of the payload, and can be implemented as a filter whose transfer function has
constant coefficients. The only term that depends on the payload is the factor of the numerator
d(s)lk. This polynomial has coefficients that are proportional to m,, and others that are independent
of this mass. Grouping the coefficients that are independent of m. and multiplying them by the
previous filter and the Laplace transform of the reference signal Pp, we get O(t). 9,(t) is obtained
in a similar way from those coefficients of d(s)/R that depend on m.

" The reference e, may be expressed in a form similar to the previous:

6,(t) = 6)r(t) + Mn . 6 1'(t). (22)

" Controller A1 + A2 • s has to be adjusted in order to maintain the poles of the closed-loop system
(20) in the same positions. This is an algebraic procedure that involves resolving a system of linear
equations. Often, only the dominant poles have to be placed. This significantly reduces the amount
of calculations.

Figure 8 shows this tip position adaptive control scheme.

6. Experimental Results

In this section we apply the methods described in this paper to control two single-link lumped-mass
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flexible arms that we have built in our laboratory. The experimental setup is described first. Then exper-
imental results are presented for our two arms, which correspond to the single and two mass cases. The
single-mass arm is minimum phase and the two-mass arm is non-minimum phase. Then the two methods
presented in this paper are applied.

6.1. Single-mass flexible arm

From an identification technique described in [111, [161 we found that the parameters of this arm were:

J = 0.005529 lb.in.sec2

V = 0.01216 lb.in./rad./sec.
K = 2.184 lb.in./amp.
Coulomb friction = 0.2883 lb.inch (0.132 amp.)

Ct(t) = C . (0, - 01), C = 0.6741b.in./rad.. (23)

Equation (M-

54 . s 2 - 01(s) = -2362.5 . 01(s) + 2362.5.0,,,(s), (24)

and

s243.75gls 2 43.75 (25)

The estimated value of the Coulomb friction corresponds to the equivalent torque generated by a beam
deflection of 25 degrees, so its effect in the control is very noticeable. Transfer function (25) is minimum
phase. Then we use the control scheme of Subsection 4.1.

6.1.1. Design of inner control loop

The inner loop incorporates compensation terms for the Coulomb friction and the coupling between
the motor and the beam, according to (2). The scheme of Figure 3 is used for the inner loop. A delay
term is included in the scheme in order to take into account the delay in the control signal because of the
computations. A sampling period of 3 msec. is used for this inner loop.

An optimization program was developed to get the best controllers using the model obtained for
the motor. The settling time (considering an error less than I %) of the response of the motor to step
commands in the motor angle reference input was minimized. The saturation limit of the current amplifier
was taken into account in this design too. Step inputs were assumed as references for the inner loop
because, in order to get a good control action, the command angle for the motor should experience very
sharp changes. In fact in our experiments the motor angle varied much faster than the angle of the tip.

The resulting controllers were:
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A(z) = 17.442 - 2.442 • z-

B(z) = 6.667 - 5.667 z-

This motor position closed loop proved to be fast and accurate enough to assume that the dynamics
of this inner loop are negligible compared to the dynamics of the beam. Details may be found in [19].

6.1.2. Design of outer control loop

Notice that matrices A and B of (24) include the constant term E. I. Because this system is minimum
phase, we use the method of Subsection 4.1. First we close the loop (7):

7( = (t) - (26)0"(t =2362.5 0.0.2

Then we design the controller G(z) of Figure 4. Designing an analog P.D. controller and then
discretizing it using the Tustin transform (e.g. [20]) we get the digital controller:

G(z) = 3281.25 • 1 - 0.987 z- 1  (27)
1 - 0.74 .z-1

6.13. Adaptation

Identification of the tip mass is done by using (19) [19]. The complete control scheme is shown in
Figure 10. Experimental results are shown in Figures 11-14. Parabolic profiles of order 2 are given to
the controller as references for the tip position. Comparisons between the behavior of the arm when
using the nominal controller (27) (m,, = 54 gins. in the block m,/EI of Figure 4) and when using the
adaptive controller (block m,, is tuned) are presented. Figure 11 shows the response of the system with
the nominal payload of 54 gins. and the nominal controller (non-adaptive). Notice that the response is
very good because G, was designed for these conditions. Figure 12 shows the adaptive response with the
nominal payload. Figure 13 shows both adaptive and non-adaptive responses when payload is 142 gins.,
and Figure 14 when the payload is 15.73 gins. Notice that the system without the adaptive controller
becomes unstable in this last case.

6.2. Two-mass flexible arm

The motor submodel is the same here as in the previous arm, because we use the same motor. Coupling
torque is now:

CL(t) = 6.159. 01(t) + 2.053 • 02(t) + 4.106 O,(t). (28)
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and the beam submodel is, assuming the two nominal masses of 54 gins (0.12136 lb.):

0.12136 0 . dk9(t) -176.6032 110.377 66.2262 O,(t). (29)
0 0.12136 ) dt2  27.59425 -22.0754 -5.51885

This last expression gives the transfer functions:

01(s) 545.7 .(s 2 + 106.10833)
Om(s) s 4 + 1637.1 . S2 + 57903.3175 (30)

02(S) -45.465 (s2 
- 1273.3)

O.(s) s4 + 1637.1 -s 2 + 57903.3175

Natural frequencies of the beam are obtained from the poles of these transfer functions. They are: 6.014
rad./sec. and 40.0i16 rad./sec.. The last transfer function is non-minimum phase exhibiting a positive
zero placed at 35.683. Then the general control mehod of Subsection 4.2 is used here.

6.2.1. Motor position control loop

Because we use the same motor as in the previous arm, we use the same controllers for the inner
loop too. Only the compensation term of the motor-beam coupling has to be changed. This is imple-
mented by using expression (28). We continue here using a sampling period of 3 msec. Exp.-rimcnts
showed that the dynamics of the motor position inner loop were negligible [12) using this controller.

6.2.2. Outer loop

We use a sampling period of 6 mnsec. for this loop. We want to test the tuning of both feedforward
and feedback controllers. Then, in this experiment, in order to separate the results of tuning these two
terms, we drive the system open loop along a trajectory (only the feedforward term works). In turn, when
the arm is resting in a position, only the feedback term works to compensate for external perturbations.

Figure 15 shows the tip position reference 0,, that results from passing the fourth order parabolic
profile Pp through filter (12). The arm has to move 200 mrad. in about 0.4 sec.. The components of the
feedforward term, expressed according to (21), are:

(852.81575 + 2.6791 . s2). (1 + 0.05605 . s + 0.00157075 . s (32)
0.6697676- (s + 35.6833)2 • Pp(s)

s2 "(176.6032 + 0.12136. s2 ) . (1 + 0.05605. s + 0.001 5 7075 • s )

0.6697676 . (s + 35.6833)2 PP(s). (33)

as shown in Figure 16. Notice that lim 0,,(t) = desired tip position, and lim O,(t) = 0. So the steady
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state of the feedforward term is not affected by changes in the tip load. Because we move the arm under
open loop control conditions, we do not need Y.

In order to get the feedback controller, we chose a cost function (13) of the form: R1 = diag(l. 2, 0, 0),
R2 = 1, where we weighted the tip position twice the middle mass and motor positions. The optimum
controller that minimizes this cost is:

A= ( 0.4428 0.5572 0.0534 0.1828 ).(34)

This places the closed-loop poles at -3.79 ±.* 7.375, -6.61 ±j. 40.506. There are two dominant poles
and two secondary poles far away from them.

6.2.3. Adaptation

Identification We first tried to estimate the tip mass by using expression (19), like in the first example.
But the problem mentioned in Subsection 5.1 appeared. Experimentation showed that (18) was the best
estimation among the three proposed there. Measurements of Selspot are very noisy so we had to pass
all 8i measurements through a low pass filter with cut off frequency 100 rad./sec.

The tip acceleration was estimated by fitting a second order parabola to several consecutive tip position
samples. At the first instants of the motion, tip position experiences little changes: first it moves slightly
backwards and then it moves forward at a low speed. Then the tip acceleration is close to 0 and
estimations based on (18) are unreliable. Estimations are consistent after about 0.15 sec. from the start
of the movement, when the tip experiences noticeable motion.

Controller adjustment Analysis showed that both dominant and secondary poles of the closed loop
system could be maintained approximately in the same positions (deviations less than 20% with respect to
the values given at the end of the outer loop design subsection), for variations of the payload between 30
grams and 160 grams, by tuning independently the P.D. controllers associated with each mass position
measurement. Further analysis showed that good results are attained by using the following simple
adaptive law:

A'= p.(I+A,)- (35)

= p. A, (36)

where Ai, i = 1,2 are the two first elements of vector A (position coefficients), and A,,j = 3,4 are the two
last elements of this vector (velocity coefficients); A represents the coefficients of the controller for the
nominal tip mass m, and A' represents the coefficients of the new P.D. controller for the estimated new
tip mass m'; and p is m'/m,.

An adaptive controller based on the above ideas would run the first 0.15 sec. of the motion (where
the tip mass is being identified) with the nominal controller, and the remaining of the motion with the
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tuned controller. This works in minimum phase systems, where the gains of the feedback controller are
high (single-mass case) and allow the system to recover from the position errors produced during these
0.15 sec. But in non-minimum phase systems, feedback gains have to be low (in order to have a staole
closed loop system), and tracking errors produced in these first 0.15 sec. cannot be corrected during the
remaining 0.25 sec. of motion, the trajectory described by the tip being quite distorted.

Then, the following experiment was designed to test open and closed loop performances in our two-
mass arm. The experiment is composed of four phases (see Figure 17). The first two phases are needed
for the identification of the tip mass. The other two correspond to the real movement of the arn, wi'h
the controller coefficients already tuned. They are:

Phase 1 The arm is open loop driven (inner loop is closed, outer loop is open) following the trajectory
0, obtained from a Quasi-parabolic profile Pp. The feedforward signal is generated from (32), (33)
assuming the nominal tip mass of 54 gins. We are estimating the tip mass during all this phase.
'he arm is driven in this way until we get a consistent estimation of m, (until about 0.15 sec.).

Phase 2 Once the tip mass has been estimated, the feedback controller is recalculated according to (35),
(36), the open loop control is stopped, the new feedback loop is closed, and the tip reference is
settled to the initial position. Then the arm goes back to the initial state.

Phase 3 Once the arm is approximately in the initial state, we start the real motion. In this phase we drive
the arm according to the nominal trajectory by using the open loop controller. The fecJdr~ward
controller has already been tuned ((21) with the value of the estimated tip mass), so the tip position
reference is closely tracked.

Phase 4 Finally, when the tip has approximately reached the goal position, the controller is switched
from an open to a closed loop scheme. In this phase, the work is carried out by the tuned
feedback controller, that positions the tip exactly on the target position, and compensates for external
perturbations.

Figure 17 shows the tip reference, and tip position obtained for a tip mass of 54 gins. (the nominal
value). The value given by the estimator was 58 gins. Figure 18 shows that the commanded position
for the motor (0,,,) is closely tracked by the actual motor position (0m), supporting the assumption that
the dynamics of the inner loop are of secondary order compared to the dynamics of the beam. Figure
19 shows the results of repeating the experiment with a tip mass of 133 ems. The estimated mass was
now 120 grns. Figure 20 shows the response of the arm, with a tip mass of 133 gins., when the nominal
controller (34) is used without any adaptation.

Phase 2 is the most critical part of this process in the sense that is the longest one, and can cause
oscillations. The arm experiences a strong acceleration in the direction opposite to the motion, and then
a quick decceleration in order to be placed at the initial position. In some cases, it produces oscillations
(see Figure 19) that are the result of saturating the amplifier. These phenomena do not appear later, in
phase 4, where the feedback loop is working again, under less extreme conditions.

7. Conclusions

A new method to control single-link lightweight flexible arms in the presence of joint friction and changes
in the load has been presented.
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Reduction of frictional nonlinear effects is achieved by closing a high gain loop around the motor
position. This was developed in a previous paper [13] (and Report II) and includes compensating terms
for the coupling torque and the Coulomb friction.

The new ideas that this report presents are two schemes to control the tip position of the arm when
there are changes in the tip load. The first scheme is significantly simpler than the second, but can be
used only in minimum phase systems.

The general control scheme (second one) is shown to be simple and computationally efficient: the
sampling period was 3 msec. in our experiments and this was the time needed by real-time control
calculations. The controller is composed of two nested control loops (three in the first scheme) plus an
adaptation loop, but each one is formed by very simple elements. In fact, our experiments show that
using a computer of very modest calculation capabilities, a controller that fulfills the desired specifications
can be implemented. The experimental responses were shown to be good even in the case of extreme
conditions: the Coulomb friction was very high and the payload ranged from 1/3 to 3 times the nominal
tip load of 54 gr..

Experimental results showed that our control scheme made the tip follow the reference accurately even
with a 10% error in the estimates of the tip mass, as happened in our experiments.

Phase 2 of the two-mass flexible arm experiment makes the total time required for the motion be
unnecessarily large. In a practical implementation of this, Phase 2, returning tip to initial position, could
be eliminated. Then tip would start from some new initial state closer to the goal state, and an appropiate
new trajectory would have to be calculated. It means that the desired trajectory 0,r and the feedforward
signal 0,,, should have to be recalculated at the end of Phase 1. These trajectories have to reach the final
position, but now starting from the actual state of the arm, at the end of Phase 1, where the tip has some
velocity, acceleration and, eventually, some jerk. Efficient ways of calculating these trajectories in order
to avoid Phase 2 are object of our present research.

A significant advantage, from the design point of view, of our control scheme is that each loop is
designed independently of the others (starting from the inner one) and their elements are calculated easily
and according to simple specifications. The inner loop is designed to compensate friction and make the
motor response fast. Both goals are achieved with the same high gain P.D. controller. The middle loop
of the first scheme dramatically simplifies the dynamics of the system (reduces its transfer function to a
double integrator). The outer loop wants a fast and accurate response in the tip position (a simple P.D.
with a feedforward term). The adaptive control takes care of changes in the load by estimating only one
parameter of the system; and Subsection 5.2 shows that the control scheme may be tuned to the new tip
load with a minimum computation effort.

Finally, this control approach is different from others in the following sense. Existing methods to
control flexible arms are based on the explicit control of the tip position only, where the controller
generates the current for the DC motor of the joint as a control signal. The proposed method is based on
the simultaneous explicit control of the joint motor position and tip position. The controller for the motor
position generates a control signal that is a current for th.. DC motor, as in the other methods. But the
tip position controller generates a control signal which is a motor position reference for the inner loop.

17



VIt
I.?

3

Figure 1: Lumped-mass flexible beam.

Onr ~s) + G~s) mr.+ Gc~s i MS) M gS) n

Figure 2: Control scheme robust to friction.
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Figure 6: Nominal trajectories for the tip position (Pp).

Figure 7: Feedforward control.
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Figure 8: Adaptive general tip position control scheme.
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Figure 13: Tip position response of nominal and adaptive controllers with a payload of 142 gins.I am (single-mass arm).
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Figure 14: Tip position response of nominal and adaptive controllers with a payload of 15.73 gns.
(single-mass arm).
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Figure 17: Tip position response of adaptive controller with a payload of 54 gins. (two-mass ann).
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Figure 18: Motor position reference and actual motor position with a payload of 54 gins.
(two-mass arm).
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Figure 19: Tip position response of adaptive controller with a payload of 133 gins. (two-mass arm).

Figure 20: ip response with a payload of 133 gnu._ and the nominal controller is used
(two-mass arm).
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